Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.11.10.468173

ABSTRACT

In this study, we present a molecular characterization of the interaction between the SARS-CoV-2 envelope protein E with TLR2. We demonstrated that E protein interacts physically with TLR2 receptor in a specific and dose-dependent manner. Furthermore, we showed that this interaction is able to engage TLR2 pathway as demonstrated by its capacity to activate NF-κB transcription factor and to stimulate the production of CXCL8 inflammatory chemokine in a TLR2-dependent manner. Furthermore, in agreement with the importance of NF-κB in TLR signaling pathway, we showed that the chemical inhibition of this transcription factor led to significant inhibition of CXCL8 production, while blockade of P38 and ERK1/2 MAP kinases resulted only in a partial CXCL8 inhibition. Overall, our findings suggest considering the envelope protein E as a novel target for COVID-19 interventions: ( i ) either by exploring the therapeutic effect of anti-E blocking/neutralizing antibodies in symptomatic COVID-19 patients, or ( ii ) as a promising non-Spike SARS-CoV-2 antigen candidate to include in the development of next generation prophylactic vaccines against COVID-19 infection and disease. Importance Although, the exact mechanisms of COVID-19 pathogenesis are unknown, recent data demonstrated that elevated levels of pro-inflammatory cytokines in serum is associated with enhanced disease pathogenesis and mortality. Thus, determining the molecular mechanisms responsible for inflammatory cytokine production in the course of SARS-CoV-2 infection could provide future therapeutic targets. In this context, to the best of our knowledge, our report is first to use a detailed molecular characterization to demonstrate that SARS-CoV-2 Envelope E protein binds to TLR2 receptor. Specifically, we showed that SARS-CoV-2 Envelope E protein binds to TLR2 in a direct, specific and dose-dependent manner. Investigating signalling events that control downstream activation of cytokine production show that E protein / TLR2 binding leads to the activation of NF-κB transcription factor that control the expression of multiple pro-inflammatory cytokines including CXCL8. Overall, our findings suggest considering the envelope protein E as a novel target for COVID-19 interventions.


Subject(s)
COVID-19
2.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3948202

ABSTRACT

Inflammation observed in SARS-CoV-2-infected patients suggests that inflammasomes, proinflammatory intracellular complexes, regulate various steps of infection. Lung epithelial cells express inflammasome-forming sensors and constitute the primary entry door of SARS-CoV-2. Here, we describe that the NLRP1 inflammasome detects SARS-CoV-2 infection in human lung epithelial cells. Specifically, human NLRP1 is cleaved at the Q333 site by multiple coronavirus 3CL proteases, which triggers inflammasome assembly, cell death and limits the production of infectious viral particles. Analysis of NLRP1-associated pathways unveils that 3CL proteases also cleave and inactivate the pyroptosis executioner Gasdermin (GSDM)-D. Consequently, Caspase-3 and GSDM-E promote alternative cell pyroptosis, a process exacerbated in cells exhibiting imparied type I interferon production. Finally, analysis of pyroptosis markers in plasma from COVID-19 patients with characterized severe pneumonia due to Interferon alterations identify GSDM-E/Caspase-3 as biological markers of disease severity. Overall, our findings identify NLRP1 as a key sensor of SARS-CoV-2 infection in lung epithelia.Funding Information: This project has been funded on lab own funds from unrelated grants from the Fondation pour la Recherche Médicale (FRM) and ERC StG (INFLAME) to EM, from ERC StG (ANTIViR) to CG, by the French Ministry of Health with the participation of the Groupement Interrégional de Recherche Clinique et d’Innovation Sud-Ouest Outre-Mer (PHRCI 2020 IMMUNOMARK-COV) to G-M.B. The ASB3 structure is supported by LABEX, Investissement d’Avenir and foundation Bettencourt grants to ON. MP and RP were respectively funded by a CIFRE PhD fellowship and a research grant from Invivogen. SB is supported by a PhD fellowship from Mali ministry of education and from the FRM (FDT 12794). SALC is supported by a Vaincre La Mucoviscidose (VLM) PhD fellowship.Declaration of Interests: Authors declare no conflict of interest. Ethics Approval Statement: All donors had given written informed consent and the study was approved by the ethical review board “Comité de Protection des Personnes Est-III” (ID-RCB 2020-A01292-37).


Subject(s)
Pneumonia , COVID-19
3.
Antoine Rebendenne; Ana Luiza Chaves Valadão; Marine Tauziet; Ghizlane Maarifi; Boris Bonaventure; Rémi Planès; Joe McKellar; Sébastien Nisole; Mary Arnaud-Arnould; Olivier Moncorgé; Caroline Goujon; Nicholas A. Crossland; Christopher S. Chen; Darrell N. Kotton; Susan C. Baker; John H. Connor; Florian Douam; Andrew Emili; Mohsan Saeed; Ilayda Sahin; Cavit Kerem Kayhan; Fatma Tokat; Gurler Akpinar; Murat Kasap; Ayse Sesin Kocagoz; Ugur Ozbek; Dilek Telci; Fikrettin Sahin; Koray Yalcin; Siret Ratip; Umit Ince; Guldal Suyen; Ercument Ovali; Liam Fergusson; Marta Conti; Marius Rameil; Vanessa Nakonecnij; Jakob Vanhoefer; Leonard Schmiester; Muying Wang; Emily E Ackerman; Jason E Shoemaker; Jeremy Zucker; Kristie L Oxford; Jeremy Teuton; Ebru Kocakaya; Gokce Yagmur Summak; Kristina Hanspers; Martina Kutmon; Susan Coort; Lars Eijssen; Friederike Ehrhart; Rex D. A. B.; Denise Slenter; Marvin Martens; Robin Haw; Bijay Jassal; Lisa Matthews; Marija Orlic-Milacic; Andrea Senff-Ribeiro; Karen Rothfels; Veronica Shamovsky; Ralf Stephan; Cristoffer Sevilla; Thawfeek Mohamed Varusai; Jean-Marie Ravel; Vera Ortseifen; Silvia Marchesi; Piotr Gawron; Ewa Smula; Laurent Heirendt; Venkata Satagopam; Guanming Wu; Anders Riutta; Martin Golebiewski; Stuart Owen; Carole Goble; Xiaoming Hu; Rupert Overall; Dieter Maier; Angela Bauch; John A Bachman; Benjamin M Gyori; Carlos Vega; Valentin Groues; Miguel Vazquez; Pablo Porras; Luana Licata; Marta Iannuccelli; Francesca Sacco; Denes Turei; Augustin Luna; Ozgun Babur; Sylvain Soliman; Alberto Valdeolivas; Marina Esteban-Medina; Maria Pena-Chilet; Tomas Helikar; Bhanwar Lal Puniya; Anastasia Nesterova; Anton Yuryev; Anita de Waard; Dezso Modos; Agatha Treveil; Marton Laszlo Olbei; Bertrand De Meulder; Aurelien Naldi; Aurelien Dugourd; Laurence Calzone; Chris Sander; Emek Demir; Tamas Korcsmaros; Tom C Freeman; Franck Auge; Jacques S Beckmann; Jan Hasenauer; Olaf Wolkenhauer; Egon Willighagen; Alexander R Pico; Chris Evelo; Lincoln D Stein; Henning Hermjakob; Julio Saez-Rodriguez; Joaquin Dopazo; Alfonso Valencia; Hiroaki Kitano; Emmanuel Barillot; Charles Auffray; Rudi Balling; Reinhard Schneider; - the COVID-19 Disease Map Community.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.28.358945

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the third highly pathogenic coronavirus to spill over to humans in less than 20 years, after SARS-CoV-1 in 2002-2003 and Middle East respiratory syndrome (MERS)-CoV in 2012. SARS-CoV-2 is the etiologic agent of coronavirus disease 19 (COVID-19), which ranges from mild respiratory symptoms to severe lung injury and death in the most severe cases. The COVID-19 pandemic is currently a major health issue worldwide. Immune dysregulation characterized by altered innate cytokine responses is thought to contribute to the pathology of COVID-19 patients, which is a testimony of the fundamental role of the innate immune response against SARS-CoV-2. Here, we further characterized the host cell antiviral response against SARS-CoV-2 by using primary human airway epithelia and immortalized model cell lines. We mainly focused on the type I and III interferon (IFN) responses, which lead to the establishment of an antiviral state through the expression of IFN-stimulated genes (ISGs). Our results demonstrate that both primary airway epithelial cells and model cell lines elicit a robust immune response characterized by a strong induction of type I and III IFN through the detection of viral pathogen molecular patterns (PAMPs) by melanoma differentiation associated gene (MDA)-5. However, despite the high levels of type I and III IFNs produced in response to SARS-CoV-2 infection, the IFN response was unable to control viral replication, whereas IFN pre-treatment strongly inhibited viral replication and de novo production of infectious virions. Taken together, these results highlight the complex and ambiguous interplay between viral replication and the timing of IFN responses.


Subject(s)
Coronavirus Infections , Lung Diseases , Death , COVID-19 , Melanoma , Respiratory Insufficiency
SELECTION OF CITATIONS
SEARCH DETAIL